Harnessing Natural Diversity to Probe Metabolic Pathways

نویسندگان

  • Oliver R Homann
  • Houjian Cai
  • Jeffrey M Becker
  • Susan L Lindquist
چکیده

Analyses of cellular processes in the yeast Saccharomyces cerevisiae rely primarily upon a small number of highly domesticated laboratory strains, leaving the extensive natural genetic diversity of the model organism largely unexplored and unexploited. We asked if this diversity could be used to enrich our understanding of basic biological processes. As a test case, we examined a simple trait: the utilization of di/tripeptides as nitrogen sources. The capacity to import small peptides is likely to be under opposing selective pressures (nutrient utilization versus toxin vulnerability) and may therefore be sculpted by diverse pathways and strategies. Hitherto, dipeptide utilization in S. cerevisiae was solely ascribed to the activity of a single protein, the Ptr2p transporter. Using high-throughput phenotyping and several genetically diverse strains, we identified previously unknown cellular activities that contribute to this trait. We find that the Dal5p allantoate/ureidosuccinate permease is also capable of facilitating di/tripeptide transport. Moreover, even in the absence of Dal5p and Ptr2p, an additional activity--almost certainly the periplasmic asparaginase II Asp3p--facilitates the utilization of dipeptides with C-terminal asparagine residues by a different strategy. Another, as-yet-unidentified activity enables the utilization of dipeptides with C-terminal arginine residues. The relative contributions of these activities to the utilization of di/tripeptides vary among the strains analyzed, as does the vulnerability of these strains to a toxic dipeptide. Only by sampling the genetic diversity of multiple strains were we able to uncover several previously unrecognized layers of complexity in this metabolic pathway. High-throughput phenotyping facilitates the rapid exploration of the molecular basis of biological complexity, allowing for future detailed investigation of the selective pressures that drive microbial evolution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harnessing plant metabolic diversity.

Advances in DNA sequencing and synthesis technologies in the twenty-first century are now making it possible to build large-scale pipelines for engineering plant natural product pathways into heterologous production species using synthetic biology approaches. The ability to decode the chemical potential of plants by sequencing their transcriptomes and/or genomes and to then use this information...

متن کامل

Harnessing yeast subcellular compartments for the production of plant terpenoids.

The biologically and commercially important terpenoids are a large and diverse class of natural products that are targets of metabolic engineering. However, in the context of metabolic engineering, the otherwise well-documented spatial subcellular arrangement of metabolic enzyme complexes has been largely overlooked. To boost production of plant sesquiterpenes in yeast, we enhanced flux in the ...

متن کامل

Pre-emption with or without Pre-task Planning: A Probe into L2 Lexical Diversity

The current study, setting a two-fold goal, attempted to see whether the preemptive focus on form (FonF) under either planned or unplanned conditions could contribute to increasing lexical diversity in written narratives and, second, to find whether there was a trade-off between the lexical diversity and accuracy. To this end, 32 beginner learners were selected following a Quick Oxford Placemen...

متن کامل

Systems Biology Approaches to Understand Natural Products Biosynthesis

Actinomycetes populate soils and aquatic sediments that impose biotic and abiotic challenges for their survival. As a result, actinomycetes metabolism and genomes have evolved to produce an overwhelming diversity of specialized molecules. Polyketides, non-ribosomal peptides, post-translationally modified peptides, lactams, and terpenes are well-known bioactive natural products with enormous ind...

متن کامل

New Hydrocarbon Degradation Pathways in the Microbial Metagenome from Brazilian Petroleum Reservoirs

Current knowledge of the microbial diversity and metabolic pathways involved in hydrocarbon degradation in petroleum reservoirs is still limited, mostly due to the difficulty in recovering the complex community from such an extreme environment. Metagenomics is a valuable tool to investigate the genetic and functional diversity of previously uncultured microorganisms in natural environments. Usi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS Genetics

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2005